Author: Robbins
Robbins EPB and Conveyors complete complex Lot 5 at Emisor Oriente
On February 28, 2019 a ceremony was held to mark the breakthrough of a machine proven in both soft ground and hard rock. The 8.93 m (29.3 ft) diameter Robbins EPB and continuous conveyor system completed what is arguably one of the most difficult legs of the complex Emisor Oriente tunnel, an epic 62 km (39 mi) long conduit that will revamp wastewater treatment for more than 21.2 million people in Mexico City.
The 6 km (3.7 mi) long Lot 5, one of six lots at Emisor Oriente, required the Robbins machine to be launched from the deepest civil works shaft in Mexico, at 150 m (492 ft), and excavated mixed face conditions as well as abrasive basalt rock. “I am proud of concluding the excavation successfully given that this is the section with the greatest depth on the project,” said José Adolfo Méndez Colorado, Superintendente de Maquinaria for contractor Ingenieros Civiles Asociados (ICA). “Robbins Field Service had an important contribution in satisfactorily concluding this section. The machine operation was of primary importance: Field Service personnel know how to operate the equipment accurately for favorable results. The speed with which they detect a problem is a favorable point to reduce downtime on the excavation.”
The complexity of the ground conditions, continued Méndez, required the correct concentration and selection of polymers, a large challenge in itself. Field Service assisted with other issues and with equipment operation: “There were some issues with the screw conveyor conveying mixed ground and also in the articulation system, which were overcome with Field Service experience. They also knew the correct operation of the continuous conveyor system, which kept us to expected performance.”
“We are very proud of this machine as it has worked in two very different worlds,” said Roberto Gonzalez, General Manager for Robbins Mexico. In 2011 the machine originally slated for Lot 5 was fast-tracked to bore a 3.9 km (2.4 mi) long section of Lot 1b—a critical part of the line that needed to become operational right away to prevent chronic seasonal flooding. “The EPB proved itself while using conveyors in the sticky clays of Mexico City with very high percentages of water content, up to 400%.” The machine achieved rates of up to 592.5 m (1,944 ft) in one month—considered a record among the six EPBs (three of them Robbins) used on the project. After completing the bore in just 15 months, the machine was sent to the Lot 5 site, where modifications were made for a section of mixed ground and rock.
Modifications included a high-pressure man lock capable of withstanding 7 bars, chromium carbide wear plates added to the screw conveyor, and grizzly bars added to the cutterhead along with heavy duty cutting tools.
The machine was assembled in a 28 m (92 ft) long assembly chamber at the bottom of the launch shaft and commissioned in August 2014, requiring all back-up gantries to remain at the surface. Two months later in October 2014, after advancing 150 meters (492 ft), the machine and its back-up gantries were completely assembled in the tunnel. One month later, the continuous conveyor system was installed and running. “The assembly of the EPB at Lot 5 has the record of the deepest assembly of a TBM in Mexico. It required great coordination of ICA engineers, high capacity cranes for the assembly and human resources in order to keep to the ten-week schedule for assembly,” said Gonzalez.
With tunneling at Lot 5 now officially concluded there is one more breakthrough remaining before the Emisor Oriente line is complete: An 8.93 m (29.3 ft) Robbins EPB operating at Lot 4 is scheduled to break through this spring. A third Robbins EPB operating at Lot 3 completed its tunnel in 2018.
The Túnel Emisor Oriente (TEO) is the answer to more than 100 years of sinking in Mexico City as the result of drained lake beds and general lowering of the water table. The city’s buildings, main streets and other structures have sunk more than 12 m (39 ft) in that time, and much of the area is vulnerable to flooding. At the same time the area’s gravity-fed wastewater lines have lost their slope and are severely under capacity.
Once tunneling is complete, the resulting TEO will expand capacity, adding 150 m3/sec (5,297 ft3/sec) to the Valley of Mexico system, as well as alleviating the risk of flooding in critical areas. It will also convey wastewater to the country’s largest wastewater treatment plant. The massive tunnel includes 24 shafts, ranging from 23 meters to 150 meters (75 to 492 ft) in depth, plus an exit portal at the treatment plant in the Municipality of Atotonilco, in the state of Hidalgo.
Robbins Crossover TBM completes Turkey’s Longest Water Tunnel
Excavation of Turkey’s longest water tunnel came to an end on December 18, 2018. To get there, a 5.56 m (18.2 ft) diameter Robbins Crossover (XRE) TBM and the contractor JV of Kolin/Limak had to overcome dozens of major fault zones and water pressures up to 26 bar. The completed national priority water line is set to go into operation in March 2019.
The 31.6 km (19.6 mi) long Gerede Water Transmission Tunnel is an urgently needed project due to severe and chronic droughts in the capital city Ankara. Its final leg, a 9.0 km (5.6 mi) section of extremely difficult ground including sandstone agglomerate, limestone and tuff, was just one section in the middle of a tunnel widely considered to be the most challenging ever driven by TBMs in Turkey. “I’ve had the chance to study and visit the majority of mechanized tunnelling projects in Turkey since the 1980s. The Gerede project is one of the most challenging projects among them,” said Dr. Nuh Bilgin, Professor of Mine and Tunnel Mechanization at Istanbul Technical University and Chairman of the Turkish Tunnelling Society.
The Robbins XRE TBM was called in to complete the tunnel, which was at a standstill after using three Double Shield TBMs from another manufacturer. Those machines encountered incredibly difficult geology including massive inrushes of mud and water. The Kolin/Limak JV had to develop a new strategy given the unexpected ground conditions. They contacted The Robbins Company, who suggested a Crossover (Dual-Mode Type) TBM for the remaining section of tunnel. “The Crossover TBM provided great ease and versatility during the entire project with frequently changing ground conditions. The TBM was equipped with features such as increased thrust, two-speed gearbox, and modular screw conveyor. It was capable of giving the necessary responses in different geologies, which was our most important asset in achieving our goal,” said Barış Duman, Project Manager for the Kolin – Limak JV.
“The challenging part for us was to design and manufacture a TBM that could complete the difficult section of the Gerede Tunnel where two other competitor TBMs had failed,” said Yunus Alpagut, Robbins representative in Turkey. The specialized machine was designed to statically hold water pressure up to 20 bar, a failsafe that none of the standard Double Shield TBMs had been equipped with. A convertible cutterhead was also provided that was designed for ease of conversion between hard rock and EPB modes, and with cutter housings that could be fitted with either disc cutters or tungsten carbide tooling. To cope with difficult ground, the Gerede machine was also equipped with the Torque-Shift System, multi-speed gearing allowing the machine to function as either an EPB or a hard rock TBM. This function is done by adding another gear reduction–heavy duty pinions and bull gears accommodate high torque at low speed, allowing the machine to bore through fault zones and soft ground without becoming stuck.
The Crossover machine was assembled in spring 2016 after crews excavated a bypass tunnel to one side of one of the stuck Double Shield TBMs. An underground assembly chamber allowed the machine to be built in the tunnel using Onsite First Time Assembly (OFTA). “The logistics of getting components through the existing tunnel were the most challenging thing. The assembly chamber was 7 km (4 mi) from the portal. The water inflow of 600 l/s (159 gal/s) made it difficult to get the materials to the machine,” said Glen Maynard, Robbins Field Service Site Manager.
Despite the challenges, the machine began boring in summer 2016 and within the first 50 m (160 ft) of boring had successfully passed through the section that buried the original Double Shield TBM. The machine was required to be used in EPB mode as it encountered water pressures up to 26 bars, alluvium, flowing materials, clay and a total of 48 fault zones. Water pressure was lowered by draining the ground water through the rear shield probe drill ports, which were equipped with normally-closed ball valves. Probe drilling was done on a routine basis to get through the ground conditions. “Together with the difficult geological conditions the travel time to reach the TBM within the tunnel had effects on TBM performance. Despite this constraint, the tunnel excavation achieved a best day of 29.4 m (96.5 ft), best week of 134.6 m (441.6 ft) and a best month of 484 m (1,588 ft),” said Duman.
“We had many challenging areas with water and high pressures up to 26 bar along with alluvial material in fault zones. Ground pressure on the shield body caused squeezing conditions in clay. In these regions, we were able to quickly pass through by keeping the TBM advance rate, cutterhead rpm and screw conveyor rotation speed at the ideal level. Ultimately, we think our decision to select a Crossover TBM was correct,” continued Duman.
With tunneling complete, the pipeline is on track to open in March 2019. The tunnel will convey water from the Gerede River to Çamlıdere Dam, which provides potable water for the Ankara city water system.
Complimentary Webinar: How to Speed up Your TBM Tunnel
Rapid excavation is considered by many to be the ultimate goal in TBM tunneling—machines that reliably complete projects on time (or early) with faster advance rates, regardless of conditions. However, speeding up a project schedule is not as straightforward as pushing a machine harder, working longer hours, or increasing your crew size. The entire project schedule, from initial investigations to the design process, must be considered.
In this succinct, complimentary 40-minute presentation designed to better fit your workday, Robbins Engineering Director Brad Grothen and Elisa Comis, Associate at McMillen Jacobs, discuss what rapid excavation really looks like in the field including case studies on TBM design and real-world examples of project scheduling.
Akron’s Crossover TBM: Powering Through Tough Geology
Watch a 9.26 m Robbins Crossover XRE TBM, dubbed “Rosie” in honor of Rosie the Riveter, tackle tough ground on the Akron Ohio Canal Interceptor Tunnel (OCIT).
Tough TBM and Team Overcome the Odds with Atlanta Breakthrough
On October 4, 2018, onlookers watched as a 3.8 m (12.5 ft) diameter Robbins Main Beam TBM completed its epic journey. The TBM, christened “Driller Mike”, after local rapper and activist “Killer Mike”, overcame extremely hard rock conditions along a curving 8.0 km (5.0 mi) tunnel to bolster the city of Atlanta, Georgia, USA’s water supply.
The new tunnel brings the Atlanta Water Supply Program one step closer to increasing the city’s water capacity to between 30 and 90 days depending on daily usage. “Our schedule for the project was very aggressive but the project team stayed together to overcome issues related to the mining of the tunnel,” said Bob Huie, Project Director for the PC Russell JV, the Construction Manager at Risk (CMAR) for the project.
The unique structure of the project team is credited with the overall project success despite challenges. “I’m proud of our team. They had obstacles and challenges and challenging ground, but they stuck together and didn’t give up, and they were successful. There was great leadership and supervision all around,” said Larry Weslowski, Tunnel Superintendent for the PC Russell JV.
The project is only the third such large construction project in the U.S. to use the CMAR structure. The PC Construction/HJ Russell JV was selected as the CMAR for the project, who then purchased the Robbins Main Beam TBM for the tunnel. The designer for the construction works including tunnel and shafts, JP2—consisting of Stantec, PRAD Group, Inc., and River 2 Tap—specified the hard rock TBM. Operation and assembly of the TBM was then sub-contracted to the Atkinson/Technique JV.
The robust TBM was assembled using Onsite First Time Assembly (OFTA) at the massive Bellwood Quarry site with help from Robbins personnel. “The guys built everything per the specs to help with scheduling. It was a challenge but there was no negativity during the process,” said Weslowski. Despite summer temperatures hitting 43 degrees Celsius (110 degrees Fahrenheit) and 100 percent humidity, the TBM was ready to launch by October 2016.
Hard granitic rock challenged the 19-inch disc cutters from the outset. “There was ground so hard that it would take eight hours to go 1.5 m (5 ft). It was between 117 and 310 MPa (17,000 and 45,000 psi) UCS. The beginning of the job was tough,” said Weslowski, but he added that once the learning curve had been overcome “they started breaking project records left and right towards the end. We got a best day of 38.4 m (126 ft). Rates just kept increasing.”Other challenges included groundwater encountered during tunneling. “We did encounter groundwater contamination that required remediation. This remediation work was completed successfully,” said Huie.
With tunneling complete, the USD $300 million project for the City of Atlanta’s Department of Watershed Management is on track to meet its scheduled overall completion date of September 2019. The project will turn the inactive Bellwood quarry into a 9.1 billion liter (2.4 billion gallon) raw water storage facility connecting with the Chattahoochee River and various water treatment facilities.
Overcoming Fault Zones and Water Inflows: Thuong Kon Tum Hydro Project
In this short clip, Robbins Field Service personnel discuss how they handled boring through hard rock, fault zones, and water inflows at the Thuong Kon Tum Hydro Project in Kon Tum Province, Vietnam.
Complimentary Webinar: Achieve Steady Results in Unsteady Ground
If you’re tunneling in mixed face conditions, where any combination of rock and soil may be present in the tunnel cross section, you expect the project to be a challenge. When variability is a constant, things like surface settlement, abrasive wear on your TBM, and the proper ground conditioning are a concern. Despite these variables, your project can still be a success. With the right technology, crew, and operating methods, consistent TBM advance rates are achievable in even the most variable conditions.
In this complimentary 60-minute webinar, Robbins Vice President Doug Harding and Engineer Greg Michaelson will explore mixed face conditions, delving into recent case studies of EPB and Crossover TBMs in the field. Harding and Michaelson will make recommendations based on proven designs and methods, drawing from the experience of our knowledgeable field service personnel. Whether you’re a contractor operating the TBM, a consultant specifying the equipment, or an owner with an upcoming project, consistent excavation is possible in variable geology.
CLICK TO VIEW RECORDING OF WEBINAR
Robbins Crossover TBM “Rosie” Makes Breakthrough at Akron OCIT
On August 29, 2018, a 9.26 m (30.4 ft) diameter Robbins Crossover (XRE) TBM crossed the finish line at the Akron Ohio Canal Interceptor Tunnel (OCIT). A press day followed on September 5, where companies and members of the media were invited to view the giant machine. The machine—dubbed “Rosie” in honor of Rosie the Riveter, an icon representing American women who worked in factories and shipyards during World War II—overcame tough ground conditions during the bore.
“One of the most challenging aspects of this job was that we launched right into the most difficult part. We had 60 m (200 ft) of soft ground, a very short reach, and then from there we went right into a mixed face for 180 m (600 ft),” said David Chastka, Project Manager for Kenny Construction, a joint venture contractor on the project with Obayashi. “It took everybody we had in the industry, everybody from Robbins, to fight through that first 240 m (800 ft).”
The TBM was designed for the project’s geology, which transitioned from soil to partial face shale to full face shale rock. The Crossover XRE included features of both EPB and Hard Rock Single Shield TBM types, with a versatile cutterhead that could be configured for hard rock or soft ground conditions. While in soft ground and mixed face conditions the machine operated in closed mode, but once it hit solid rock crews switched excavation to open mode.“The machine had the power to get to the other side and made advance rates we never thought we were going to get. It was very successful in hard rock,” said Chastka. Advance rates once in full-face shale rock reached a high of 34 m (111 ft) in one day (two 10-hour shifts). Muck removal was achieved using a Robbins continuous conveyor, and conveyor availability remained high throughout the project.
“I am most proud of the team that I have had the pleasure of being a part of,” said Don Smida, Robbins Field Service Technician. “The overall scope of a project of this scale is immense, and the amount of daily cooperation & hard work that has been asked of The Robbins Company, the local unions, city staff, and Kenny-Obayashi is extremely important in reaching our common goals. I think we should all be proud of our teamwork going forward from a successful completion of the tunnel and into a successful disassembly of Rosie.”
Now that tunneling is complete, the machine will be disassembled and removed from its retrieval shaft this autumn. “The Ohio Canal Interceptor Tunnel is the largest public improvement project in our City’s history and a significant investment in our environment and infrastructure that will benefit Akron residents and businesses for generations to come,” said the City of Akron’s Mayor Daniel Horrigan. “Projects of this kind are inherently dangerous, and I am incredibly proud that the tunneling portion was completed without any major injuries, thanks to a dedicated team of professionals. And although Robbins is an international company with worldwide impact, we were pleased to be able to work with a local Northeast Ohio firm on this significant project.”
The OCIT Project for the City of Akron, Ohio, USA consists of the construction of a conveyance and storage tunnel system to control Combined Sewer Overflows (CSOs) for several regulators in the downtown Akron area. The EPA-mandated project includes the 1.89 km (1.17 mi) conveyance and storage tunnel, as well as drop shafts, diversion structures, consolidation sewers, and related structures.
Moving Projects Forward: Ohio Canal Interceptor Tunnel
Robbins and joint venture contractor Kenny/Obayashi worked together to achieve a short startup schedule at the Akron Ohio Canal Interceptor Tunnel. Field Service personnel assisted in TBM assembly and trained crews to achieve a smooth startup. Watch this short for a quick word from Kenny Construction’s Project Manager David Chastka on working with Robbins Field Service.
Overcoming Tough Ground: Akron Ohio Canal Interceptor Tunnel
In this short video, David Chastka, Kenny Construction Project Manager, discusses how Robbins Field Service and his team surmounted the challenge of launching immediately into difficult ground at the Akron Ohio Canal Interceptor Tunnel.
- Overcoming Mountainous Geology at Nepal's Sunkoshi Marin Project
- Unprecedented Diameter Change: The Mill Creek Tunnel
- Mine Development Machine: Successful Rectangular Rock Bore in Fresnillo, Mexico
- Encountering Caverns in France: TBM Tunneling in Karst Conditions
- 48 Fault Zones and 26 Bar Pressure: Boring Turkey's Gerede Water Transmission Tunnel