Author: Keri Lin
2017隧道协会颁奖大会
Event Name: ITA Tunneling Awards 2017
Date: November 15, 2017
Location: Paris, France
Venue: Salle Wagram
The Robbins Company is excited to announce that the recently completed Túnel Emisor Poniente (TEP) II has been nominated as an ITA Tunneling Awards finalist for Project of the Year. Winners will be announced at the ITA Tunneling Awards that will take place during the AFTES Congress in Paris, France on November 15.
The Robbins XRE TBM and its Robbins continuous conveyor system were built on location using Onsite First Time Assembly (OFTA), and featured components like a convertible cutterhead with interchangeable cutting tools, interchangeable TBM belt conveyor and screw conveyor, and multi-speed gearboxes to increase torque for tunneling through difficult ground. The 8.7 m (28.5 ft) diameter Robbins Crossover TBM bored a 5.8 km (3.6 mi) long wastewater tunnel, setting two national records in the process. The completed project will prevent flooding in urban areas and benefit the lives of 2.1 million people.
混合盾构、跨模式或更多,到底这些命名是什么机器类型?
For underground construction professionals and manufacturers, there is some confusion about the current TBM designations and what they really mean, and for what applications they are to be considered. This is especially noted when it comes to soft and mixed ground type shield machines and if they are to operate in “open” mode, “closed” mode or “semi-open/closed” mode conditions.
The term “open mode” defines defines a mode of TBM operation where no pressure is required to stabilize the boring face; the geology is self-standing and ground settlement will not occur.
The term “closed mode” defines tha mode of TBM operation where face pressure needs to be constantly applied in order to maintain face support. Should the face pressure not be maintained as determined by the geology, under-pressurization will cause ground settlement, over-pressurization can cause surface heaving.
The term “semi-open/closed mode” defines a mode of TBM operation in varying geology where the TBM has the ability to control the face.
The various machine types in question are Mixshield, Hybrid and the Robbins “Crossover”. Are they the same? If not, what is the difference? This blog seeks to clarify and explore those definitions.
Mixshield
Mixshield is a terminology introduced by German manufacturer Herrenknecht for what is essentially a Slurry TBM that uses an air bubble to control and support pressure at the face. The air bubble acts like an accumulator with the belief that this offers better pressure control. This type of machine operates only in “closed mode”. Mixshields are not meant to go from high pressure soft ground to significant rocky conditions with great efficiency, hence the name “Mixshield” is somewhat of a misnomer. They can excavate mixed face conditions, but the machine configuration is not changed so it is a different thing entirely than to excavate significant sections of differing geology. In order to change the configuration to allow more efficient operation in different sections of geology, a Hybrid machine is needed.
Hybrid, etc.
“Hybrid”, “Dual Mode”, and “Multi-Mode” are names developed by the industry to try and define machines that feature components of two different machine types. The most common types is a multi-mode between EPB with a screw conveyor (for operation in “closed mode” or “semi-closed mode”) and conversion to Rock Mode with the installation of a belt conveyor (for use in “open mode” operation). Typically, the only changes made to the machine are components such as cutting tools and muck removal method that can be switched out in the tunnel depending on ground conditions. The machines are used for large sections of vastly different geology in one tunnel, such as a section of clay followed by as significant section of rock. However these types of machines are typically designed as EPB machines and then converted, making them not very efficient for use in rock geology.
Robbins Crossover
The “Crossover Series” of TBMs was developed by Robbins in March 2015 using innovative design concepts to effectively excavate between different geologies. The Crossover Series is Robbins’ version of a Hybrid TBM but with many additional features to allow the TBM to effectively cross between different geology types. Operation of the machine can allow the machine to quickly change from “open mode” to “semi open/closed mode” and “closed mode.” The main types of Crossover TBM include the XRE (Crossover between Hard Rock and EPB), XSE (Crossover between Slurry and EPB) and XRS (Crossover between Hard Rock and Slurry). The features include interchangeable cutting tools; single direction and bi-directional cutterhead muck pick-up; multi-speed, multi-torque cutterhead drive systems; durable, abrasion resistant components on the cutterhead and screw conveyor; emergency thrust; tapered shields to reduce shield entrapment in squeezing ground; integrated probe/grout drill system for ground consolidation; and heavy steel construction with components designed for +12,000 hours of life, just to name a few.
The Crossover Series is suitable for tunnel projects that require the ability to excavate different types of geology efficiently with one machine, based on ground conditions. The TBM design is flexible enough to switch from one mode to another. Ultimately, Crossover Series machines are cost efficient in the long run, since the TBMs require less repair costs than a non-customized machine, and they can be used on multiple projects.
Based on the ground situation (whether it’s self-supporting ground, self-supporting ground with water pressure, or unstable ground), the Crossover is optimized towards “open” mode (as in hard rock shielded TBMs) or “closed” mode (as in compressed air, slurry, and EPB TBMs).
Reliable geological information is therefore critical to the TBM design. An accurate geological report is needed to decide when and where to convert the machine as well. During excavation, adequate probe drilling is further essential to determine the ground conditions ahead of the Crossover TBM.
Below are the features specific to each type of Crossover machine.
Crossover XRE
- Mixed ground cutterhead: with disc cutters & soft ground tools or a combination of tools (interchangeable).
- Two-speed gearboxes: provide high torque at low RPM under soft ground conditions and high RPM under hard rock conditions.
- Cutterhead rotation: Single direction is more efficient in hard ground conditions and bi-directional is more efficient in soft ground to prevent roll.
Crossover XSE
- Equipped with both screw conveyor and slurry system for muck removal.
- Ground conditions: soft ground containing water under pressure (particularly for water pressures > 5 bar).
- The most universal of the Crossover machines, the XSE can bore in most types of ground.
Crossover XRS
- Highly adaptable to variable ground conditions; suitable for rock tunnels with water pressure > 5 bar.
- Hard rock machine with a rock cutterhead and slurry system in place.
- Capable of mining rock through high water pressure without grouting off water flows.
跨模式掘进在墨西哥城破纪录地贯通
2017年6月8日,包括墨西哥总统 Enrique Peña Nieto在内的一批项目官员庆祝了史诗隧道项目的最终突破。直径8.7米的罗宾斯跨模式掘进机是第一台在北美作业的跨模式掘进机,它完成了伊米苏泊尼特隧道二期 (Túnel Emisor Poniente II,简称TEP II)。这台掘进机兼并硬岩模式和土压平衡模式作业的跨模式掘进机XRE,可以在断层带、可变地面、浅埋深等地质掘进,以日掘进57米、周掘进231米和月掘进702米的速度刷新了的国家纪录。
“XRE具有很大的优势,因为它设计用于开放或封闭土压盾构模式下掘进;允许它在土壤或岩石中挖掘隧道。我们已经证实它的性能是非常有效的。” 业主Conagua,墨西哥国家水委员会TEP二期主管Ing. Juan Alberto Herrera Moro y Castillo说道。
这台独特的机器及其连续输送系统是采用现场首次安装调试的方案(OFTA)组装的,并且是为Aldesem、Provon和Recsa的承包商联合体设计的。罗宾斯跨模式掘进机的特点是,如配备可互换刀具的可转换刀盘,可互换的掘进机带式输送机和螺旋输送机,以及多速变速箱,以增加在困难地质下挖掘隧道时的扭矩。“这种设计的好处在于其卓越的推力和改变刀盘扭矩的便利性。如果机器卡在困难的地质下,这会使整个过程变得更容易,” RECSA隧道部门负责人Alberto Martinez说。
XRE机器于2015年8月启动,用于挖掘5.8公里长的废水隧道。这台机器安装在坚硬的岩石地质中,刀盘配备20英寸的滚刀。2016年初,掘进机撞击了几个接触带中的第一个,这是一条30米宽的断裂带,由破碎和块状岩石构成。虽然通过接触带的挖掘工作进展缓慢,但在更具挑战性的安山岩中,进度再次加快。在2016年3月中段贯通进入80 米深的竖井,随后进行检查和维护后,掘进机继续掘进。
2016年秋季在破碎安山岩中掘进时,隧道掘进机遇到了一个自然形成的洞穴,据信是过渡带中的岩石坠落或侵蚀岩石的古老地下湖体造成的。据估计,该洞穴的大小为90立方米,其中不稳定的地面面积约为57立方米。掘进机被停机,并立即采取措施使机器前的地面用聚氨酯泡沫稳定,然后用豌豆砾石和浆液的混合物填充洞室。
截至2016年10月底,掘进机已达到软土地面最后900米长的隧道段,并在那里转换为土压平衡模式。在最后一段浅埋深的隧道中,隧道顶部到住宅地基的距离低至4 米,地质具有再固结土壤的一致性。为了稳定软土,并将居住区以下的沉降风险降至最低,隧道施工人员从地表开始钻孔,每隔1.0米安装890根微型桩。他解释说:“我们能够做到这一点,而不会对TEP II路径沿途附近地区邻居的财产造成损害,也不会对该地区安装的道路或城市基础设施造成损害。” 承包商Aldesa的TEP II现场经理Francisco Miguel Lopez说。
现在隧道已经贯通,隧道将在投入使用前再灌注一个35厘米厚的二次混凝土衬砌。该污水隧道将对墨西哥城外西部地区的现有系统进行检修,以防止瓦尔多拉多的反复洪水。特别是,隧道将有益于Cuauttal Izcalli、Tlalnpantla和Atizapan de Zaragoza这些城市总共有210万居民。
2017破岩峰会
Event Name: Cutting Edge Conference
Dates: November 13-15, 2017
Location: Seattle, WA, USA
Venue: Renaissance Seattle Hotel
Join The Robbins Company at the Sixth Annual Cutting Edge Conference: Advances in Tunneling Technology November 13-15, in Seattle, WA. Visit our booth to learn more about current techniques being used on Robbins projects throughout the world.
2017国际轨道交通技术展览会
Event Name: STUVA Expo and Conference
Dates: December 6-7, 2017
Location: Messe Stuttgart, Germany
Venue: Messe Stuttgart Trade Fair Centre
With an increasing rate of growth, STUVA-Expo will take place parallel to STUVA-Conference December 6-7 in Messe Stuttgart, Germany. The Robbins Company is looking forward to sharing information about current TBM projects operating world-wide at this ever-growing event.
罗宾斯盾构机斋浦尔标志性城门不足5米下掘进
大陆工程公司(Continental Engineering Corporation ,简称CEC)为斋浦尔地铁项目开挖的隧道临着世界范围内地铁项目通常面临的挑战,包括小场地,以及有关路段和淤泥储存空间等的相关问题。然而,这些挑战相对较简单。与隧道施工所面临的挑战相比。土压平衡盾构机(EPB)需要在极浅的埋深下掘进,以及在几个文化敏感的历史建筑旁边和下面掘进。在考虑隧道引起的地面沉降和振动的可能后果时,这些结构及其施工方法及材料的使用寿命非常令人关注。本文将介绍为确保这些历史建筑不受隧道施工的不利影响而采取的有关隧道掘进和地表监测的措施。
困难地质解决方案:新的掘进机解决方案为成功铺平了道路
在许多隧道掘进机驱动的隧道中,出现挤压地址、高涌水、大块石等挑战是一种现实的可能性。困难的地质解决方案(DGS)在提供准确的地面调查的同时,降低了承包商和业主在这些条件下的风险。这些方法如何付诸实践的故事涉及到在最近的一个项目上测试盾式硬岩隧道掘进机勇气的困难。从这些挑战中产生的是一种新的方法来处理岩石和混合地基中的预测和不可预见的地面条件。如双行程刀盘驱动、用于表面稳定的高压灌浆注入系统和涌水控制等DGS功能是可定制的,应视为内置在盾式硬岩隧道掘进机中。本文将介绍由现场经验提供的解决方案,在困难地区取得成功所需的工具,以及如何应用它们。
罗宾斯主梁式在极坚硬和不稳定岩石地质下为挪威水力发电项目开挖隧道
这台在2015年12月为Røssåga水力发电项目贯通隧道的掘进机,是20多年来第一个在挪威作业的隧道。在掘进中, 掘进机遇到了极坚硬的岩石地质,其强度高达280 兆。这样的地质对于掘进机和其刀具都是一个极端的挑战。在掘进中,更换了一个高效的主轴承也在隧道内完成。本文讨论了整个项目,包括掘进机设计、现场首次安装调试方案(OFTA)、所遇到的挑战及项目的成果。
翻新、翻修、再制造:设计一个世代相传的掘进机
With the increase in large TBM projects over the last few decades and a global awareness of their environmental impacts, there has been a greater focus on the origin of TBMs and their parts. The focus has been further highlighted by the ITAtech; a technology-focused committee for the International Tunneling Association (ITA-AITES) that produced guidelines on rebuilds of machinery for mechanized tunnel excavation were released in 2015. While the guidelines are relatively new, Robbins has a long history of delivering robust machines, many of which are rebuilt (many are also 100% new). In this post, I’d like to explore just what a “rebuilt” TBM is, and what that means to Robbins as a TBM manufacturer.
History and Terminology
Throughout Robbins’ history (over 65 years), our TBMs and design philosophies have been based on the understanding that TBMs require a substantial initial investment, and designing machines for single tunnels is neither economical nor sustainable. This realization has resulted in robust, sturdy designs of high quality that–even before the pencil is put to paper–are meant to last for multiple projects. This is clearly shown when you look at the number of Robbins TBMs around the world that are excavating their second, third, fourth or even their eighth or ninth tunnel. There are even Robbins TBMs manufactured in the 1960s that are still in operation!
For Robbins, the term “rebuilt” describes any manner of creating a custom TBM from already existing components. It is the term we use most and continue to use. The ITAtech guidelines introduce different terminologies depending on the extent to which a TBM is rebuilt. They are, very shortly, described here:
- Remanufacturing – Remanufacturing is a process with the aim to start a new life cycle of the product using its current or modified configuration.
- Refurbishment– Refurbishment can be considered a full maintenance, where defect parts are replaced to extend the life of the product in its original configuration or with small modifications.
The guidelines describe the requirements of each process in order to designate a TBM “refurbished” or a “remanufactured”, but in reality the majority of “rebuilt” TBMs may be somewhere in between these qualifications.
The Robbins Philosophy
Over the years Robbins has built a quality assurance system that ensures when we deliver a rebuilt machine, either to the original configuration or a modified one, we still adhere to a design life of 10,000 hours. This standard also includes checks to make sure that all the components are in a functional condition of ‘as new’ or ‘new’. Due to our long experience in rebuilding TBMs, we can offer in principal the same warranty on a rebuilt machine as a new machine.
The Robbins philosophy on this is that, in order to offer the same design life and same warranties on a rebuilt machine, the initial design of the TBM will need to consider that the TBM will be used on several projects. This means that the major structures will need to be strong enough to survive even the toughest conditions and that worn parts can easily be replaced. If the machine is not properly designed for multiple projects, there will be a need to do major work to get the TBM in a working condition either in its original or modified configuration. Robbins strongly believes that considering the total life cycle of a machine, even in its first design stages, is the most economical and sustainable option.
One can argue that project owners typically only have one project and that the condition of the TBM and the suitability of its rebuild is therefore not essential. This is something that is also reflected in many of today’s tunneling projects, where the commercial consideration is often given far more attention than the technical one. We would argue, however, that an initially sturdy and robust design of the TBM will give the project more uptime, higher production rates and better flexibility if unexpected conditions are encountered, making it a good and effective kind of insurance for the project. This effect has been clearly identified in the field, where Robbins has more than 90% of world production records in hard rock.
What’s Missing
In terms of the international guidelines, they are certainly necessary and welcomed. However, the strictness of the guidelines makes them hard to adopt worldwide and perhaps not realistic for the majority of TBM rebuilds, which are customized based on project needs. The ITAtech guideline is also missing something else: the definition of what makes a TBM “new”. While opinions from different suppliers vary, Robbins is perfectly clear on this topic: If you are buying a new TBM, then it is a 100% new TBM with only 100% new components. We strongly believe the whole industry should commit to this definition of what makes a TBM “new”, and this definition should be added to the guidelines.
Robbins has throughout the years built up a vast experience in providing the right machine for the right project, whether that means a new or rebuilt machine. As a part of this experience, we are convinced that the life cycle of TBMs should be considered at the earliest stages of the design process. Designing machines with ease of rebuilding in mind ensures that we do not have to start from scratch every time a machine needs work. It also results in time, cost, and energy savings when the time does come to rebuild a machine for a new project. For the industry, this type of perspective is the only economical and sustainable option going forward.
By Sindre Log, Civil Engineer and General Manager for Robbins Norway
小型远程遥控掘进机参数表
小型远程遥控掘进机(SBU-RC)是非开挖行业的一个革新,在小直径上使长度、线性和坡度敏感的交叉口成为可能。该SBU-RC是一个无人驾驶、铰链式,可在混合地质和硬岩中掘进,配合螺旋掘进机(ABM)或者顶管系统使用。